SEMESTER LEARNING ACTIVITY PLANS (SLAP) SEMESTER EVEN 2022/2023

Time Series Analysis
MFF5052 / 3 Credits

Lecturer Coordinator:

Dr. Sudarmaji, M.Si.

UNIVERSITAS GADJAH MADA FACULTY OF MATHEMATICS AND NATURAL SCIENCE 2022

Course

(CO)

Outcomes

CO1

CO2

CO3

Universitas Gadjah Mada

Faculty of Mathematics and Natural Science Physics Department / Study Program Master Physics Semester Even 2022/2023

SEMESTER LEARNING ACTIVITY PLANS (SLAP)								
Code	Course Name	Credits (credits)	Semester	Status	Prerequisite			
MFF5052	Time Series Analysis	3	Even	Elective	None			
Short Description Program Learning Outcomes (PLO) Imposed on the Course	Name(credits)SemesterStatusPrerequisiteTime Series3EvenElectiveNone							
	PLO 6	Able to apply knowledge to analyze, synthesize, formulate problems and solve problems comprehensively in one of advanced field of physics, through experimental or theoretical research, then be able to classify and draw conclusions about their findings for the development of science and technology.						

Upon completion of this course, students should be able to:

Designing FIR and IIR filters.

Understand and model discrete signals and systems in the time domain.

Understand and model discrete signals and systems in the frequency domain.

	CO4							
	CO5							
	CO6							
	CO7							
	CO8							
The Correlation of		Learning Materials	Learning Methods	Time Allocation				
CO to								
Learning	CO1	Definition and signal characteristic	Lecture, discussion	3 x 50				
Materials and	COI	and discrete signal	Lecture, discussion	minutes				
Methods, and Time	CO1	Sampling theory and analog to digital (A/DC) conversion.	Lecture, discussion	3 x 50 minutes				
Allocation	CO1	Physical modeling of discrete linear	Lecture, discussion	3 x 50				
	COI	time invariant systems.	Lecture, discussion	minutes				
	CO2	Differential equations and transfer	Lecture, discussion	3 x 50				
	CO2	functions.	Lecture, discussion	minutes				
	CO2	Z Transformation	Lecture, discussion	3 x 50				
	CO2	Z Hansioimation	Lecture, discussion	minutes				
	CO2	Z transform back	Lecture, discussion	3 x 50				
	CO2	Z transform back	Lecture, discussion	minutes				
	CO2	Application of the Z transformation	Lecture, discussion	3 x 50				
	CO2	in the analysis of discrete physical	Lecture, discussion	minutes				
		systems.		imitates				
	зумень.							
	CO3	Discrete Fourier Transform (DFT)	Lecture, discussion	3 x 50				
	C03	and discrete inverse Fourier	Lecture, discussion	minutes				
		transform (Invert).		illitutes				
	CO3	Fast Fourier Transform (FFT) and	Lecture, discussion	3 x 50				
	005	Fast Fourier Transform (IFFT).	Lecture, discussion	minutes				
	CO3	Discrete filter and windowing	Lecture, discussion	3 x 50				
		system.		minutes				
	CO4	Design and use of FIR filters for	Lecture, discussion	3 x 50				
		low pass, band pass, high pass and multi band.	,	minutes				
	CO4	Discrete Butterword method IIR	Lecture, discussion	3 x 50				
	C04	filter design (low pass, high pass	Lecture, discussion	minutes				
		and bandpass).		imitates				
	CO4	Bilinear transformation and	Lecture, discussion	3 x 50				
		impulse invariant.		minutes				
	CO4	IIR filter design with discrete	Lecture, discussion	3 x 50				
		chebyshev method (low pass, high		minutes				
		pass and bandpass).						
	Final Exam/ Project Task Results/ Case Analysis Results							
Learning Methods	Lecture, disc	V	•					
Student	Learn to anal	yze and review: Definition and signal charac	teristic and discrete signal Sar	nnling theory and				
Learning		ital (A/DC) conversion., Physical modeling of						
Experience		Differential equations and transfer functions., Z Transformation, Z transform back, Application of the Z						
	transformation in the analysis of discrete physical systems., Discrete Fourier Transform (DFT) and							
	discrete inver	se Fourier transform (Invert)., Fast Fourier T	Transform (FFT) and Fast Four	rier Transform				

2 3 au 4	, and Manolakis, D.G., 1993, Digital Signal Processing: Principles, as, McMillan. 1994, Digital Signal Processing: A Laboratory Approach using PC-Digital Signal Processing: A Laboratory Approach using PC-Digital Signal Processing: Head of Curriculum Head	Algorithms,							
2 3 au 4 H rers 1. 2 ing) 3,4	, and Manolakis, D.G., 1993, Digital Signal Processing: Principles, ns, McMillan. 1994, Digital Signal Processing: A Laboratory Approach using PC-Digital Signal Processing: A Laboratory Approach using PC-Digit, M.Si.	Algorithms,							
2 3 au 4 H	, and Manolakis, D.G., 1993, Digital Signal Processing: Principles, ns, McMillan. 1994, Digital Signal Processing: A Laboratory Approach using PC-Digital Signal Processing PC-Digital Signal Processing PC-Digital Signal Processing PC-Digital Signal PC-Digi	Algorithms,							
	 Main references: 1. Brigham, E.O., 1974, The Fast Fourier Transform, Prentice Hall, Inc. 2. Brustle, W., 1987, Advanced Digital Signal Processing, Lab. Geophysics, FMIPA UGM. 3. Proakis, J.G., and Manolakis, D.G., 1993, Digital Signal Processing: Principles, Algorithms, and Applications, McMillan. 4. Alkin, O., 1994, Digital Signal Processing: A Laboratory Approach using PC-DSP, Prentice Hall. 								
	*) can also be obtained from the Midterm or Final Exam as the result of participatory activities or project/ case study results. According to IKU 7, the percentage of project results/ case study/ PBL results is at least 50%.								
	m 35% 17,5% 17,5%	17.50/							
	30% 7,5% 7,5% 7,5%	7,5%							
- 1	2004	5 .50/							
	lts/								
ods and ronizati h CO	Assessment Criteria/In Percentage dicators CO1 CO2 CO3	CO4							
ing / LMS ffline nline ntage									
ba m	gh pass and multi band., Discrete Butterword method IIR filter design (low pass, high pass and undpass)., Bilinear transformation and impulse invariant., IIR filter design with discrete chebyshev ethod (low pass, high pass and bandpass)								
s to Poing	ear transformation and impulse invariant., IIR filter design with discrete cl	S							