SEMESTER LEARNING ACTIVITY PLANS (SLAP) SEMESTER ODD 2022/2023

Laser Spectroscopy MFF5423 / 2 Credits

Lecturer Coordinator:

Prof. Dr. Agung Bambang Setio Utomo, S.U.

UNIVERSITAS GADJAH MADA FACULTY OF MATHEMATICS AND NATURAL SCIENCE 2022

	Universitas Gadjah Mada Faculty of Mathematics and Natural Science Physics Department / Study Program Master Physics Semester Odd 2022/2023							
SEMESTER LEARNING ACTIVITY PLANS (SLAP)								
Code	Course Name	Credits (credits)SemesterStatusPrerequisite						
MFF5423	Laser Spectroscop y	2	Odd	Elective	None			
Short Description	Laser Spectroso Study Program, The syllabus of Introduction to optogalvanic, spectroscopy (R breakdown spe (POLINEX), i components of The courses are course period is Student evalua evaluation is im minutes. The fo of completing a the course, such in completing in	 Laser Spectroscopy course is Elective course 2 credits (Theory) in the 2022 Curriculum Master Physics Study Program, Faculty of Mathematics and Natural Science UGM. The syllabus of this course is as follows: Introduction to spectroscopic, emission, and absorption methods. Limited Doppler spectroscopy methods: optogalvanic, optoacoustic, Opto-thermal, laser-induced fluorescence (LIF), resonance induced spectroscopy (RIS), resonance induced mass spectroscopy (RIMS), double resonant method, laser-induced breakdown spectroscopy (LIBS). Doppler-free spectroscopy methods, saturation, polarization methods (POLINEX), intermodulation (IMOGS), and level crossing spectroscopy. Reasoning/supporting components of laser spectroscopy with their applications and analysis. The courses are held in class for 14 weeks, each week's session last for 2 x 50 minutes. Four weeks of course period is used for Midterm Exam and Final Exam, each held for two weeks as scheduled. Student evaluation for course assessments is performed summative and formative. The summative evaluation is implemented as written exams, both Midterm and Final Exam, which take a maximum of 120 minutes. The formative evaluation is implemented as individual assignments for each student in the form of completing an assignment individually. Monitoring is carried out by observing student activities during the course, such as attendance, Q&A and discussion about the material presented, and student performance 						
Learning Outcomes (PLO) Imposed on the Course	PLO 3 Mastering further knowledge of classical and modern physics theory, and its relationship with other disciplines, and has mastered an advanced field of physics specialization that allows him to keep up with the latest international research developments. Mastering various mathematical disciplines related to an advanced field of physics, and able to develop physical models using various mathematical and computational tools with an inter or multidisciplinary approach to solving problems related to an advanced field of physics. Able to apply knowledge to analyze, synthesize, formulate problems and solve problems comprehensively in one of advanced field of physics, through experimental or theoretical research, then be able to classify and draw conclusions about their findings for the development of science and technology.							

Course	Upon completion of this course, students should be able to:								
Outcomes	<i>CO1</i>	Explain the concepts of Spectroscopy using lasers and auxiliary equipment							
(CO)		(mechanical, optical, electronic) as a legal basis for analyzing the results							
		(spectrum, numeric, pulse) of the laser light interaction with atoms/molecules.							
	CO2	Explain the mechanism of interaction between laser light and atoms/molecules							
		based on theoretical studies.							
	<i>CO3</i>	Explain the results obtained (numeric, spectrum) based on theoretical studies.							
	<i>CO4</i>								
	<i>CO5</i>								
	<i>CO6</i>	CO6 CO7							
	<i>C07</i>								
	<i>CO8</i>								
The		Learning Materials	Learning Methods	Time					
Correlation of				Allocation					
CO to									
Learning	<i>CO1</i>	Introduction: Lecture rules, exams	Lecture, discussion	2 x 50					
Materials and		and assessments. Review		minutes					
Methods, and		properties, physical quantities and							
		energy levels of atoms and							
Allocation		molecules.							
	<i>CO1</i>	A further review of the atomic	Lecture, discussion	2 x 50					
		model, from Bohr, Sommerfeld's		minutes					
		atomic model, is the presence of							
		elliptical orbits of electrons in							
	<u> </u>	atoms.	Lestern discostion	2 - 50					
	COI	An overview of the physical	Lecture, discussion	2 x 50					
		quantities of atoms/electrons is		minutes					
		associated with the presence of							
	<u>C02</u>	The review of physical quantities is	Lecture discussion	2 x 50					
	002	associated with the disturbance of	Lecture, discussion	minutes					
		atoms/electrons which are		minutes					
		influenced by external magnetic							
		and electric fields.							
	<i>CO2</i>	Solving the Laplace equation and	Lecture, discussion	2 x 50					
		the Poison equation with certain		minutes					
		boundary conditions.							
	<i>CO2</i>	A review of the physical quantities	Lecture, discussion	2 x 50					
		of coupled l and s electrons as the		minutes					
		basis for the existence of a fine							
		structure (fine structure spectrum).							
	<i>CO2</i>	The review of physical quantities is	Lecture, discussion	2 x 50					
		associated with the involvement of		minutes					
		the physical quantities of the							
		atomic nucleus which are							
		influenced by the atomic/electron							
		system as the basis for the							
		nyperfine structure (hyperfine							
		spectrum).							

<i>CO3</i>	Overview of molecular physical	Lecture, discussion	2 x 50
	quantities and their structure/energy		minutes
	levels.		
CO3	Overview of mechanical, optical	Lecture, discussion	2 x 50
	and electronic equipment as a track		minutes
	record of the interaction of laser		
	light with atoms/molecules for easy		
	analysis.		
CO3	Overview of low-resolution	Lecture, discussion	2 x 50
	spectroscopic systems for (basic)		minutes
	spectrum observations using a		
	discharge lamp energy source to		
	distinguish the spectrum results		
	when using a laser.		
<i>CO4</i>	Overview of the medium resolution	Lecture, discussion	2 x 50
	spectroscopy system (Doppler		minutes
	limited) using a laser light energy		
	source that is able to observe the		
	fine structure spectrum.		
	(optogalvanic, opto-acoustic, opto-		
	thermal, laser induced fluorescence		
	(LIF), Resonance induced		
	spectroscopy (RIS), resonance		
	induced mass spectroscopy		
	(RIMS), laser induced break down		
	spectroscopy (LIBS).)		
<i>CO4</i>	Overview of the medium resolution	Lecture, discussion	2 x 50
	spectroscopy system (Doppler		minutes
	limited) using a laser light energy		
	source that is able to observe the		
	fine structure spectrum.		
	(optogalvanic, opto-acoustic, opto-		
	thermal, laser induced fluorescence		
	(LIF), Resonance induced		
	spectroscopy (RIS), resonance		
	induced mass spectroscopy		
	(RIMS), laser induced break down		
	spectroscopy (LIBS).)	X (1 ' '	2 50
C04	Overview of high resolution	Lecture, discussion	2 x 50
	spectroscopy system (Doppler		minutes
	Free) using a faser light energy		
	source that is able to observe the		
	(seturation method, polarization		
	(POLINEX) inter modulation		
	(IMOGS) level crossing		
	spectroscopy)		
<i>C</i> 04	Overview of high resolution	Lecture discussion	2 x 50
	spectroscopy system (Doppler		minutes
	Free) using a laser light energy		minutob
	source that is able to observe the		

	spectr	um of hyperfine	e structures.					
	(satura	ation method, p	olarization					
	(POLI	NEX), inter mo	odulation					
	(IMO	GS), level cross	ing					
	spectro	oscopy).						
	Fin	al Exam/ Proj	ect Task Resu	lts/ Case A	Analysis F	Results		
Learning	Lecture, discussion							
Methods								
Student	Learn to analyze and rev	view: Introductio	n: Lecture rules	, exams and	l assessmen	ts. Review	properties,	
Learning	physical quantities and e	energy levels of a	atoms and molec	ules., A fu	rther review	of the ato	mic model,	
Experience	from Bohr, Sommerfeld	's atomic model,	1s the presence	of elliptical	orbits of el	lectrons in	atoms., An	
	overview of the physica	f quantities of ato	itios is associate	associated	with the pro	esence of q	uantized	ich
	are influenced by extern	al magnetic and	electric fields	Solving the	Laplace eq	uation and	the Poison	licii
	equation with certain bo	undary condition	is., A review of	the physica	l quantities	of coupled	l l and s	
	electrons as the basis for	r the existence of	a fine structure	(fine struct	ture spectru	m)., The re	eview of	
	physical quantities is as	sociated with the	involvement of	the physica	al quantities	s of the atom	mic nucleus	
	which are influenced by	the atomic/elect	ron system as th	e basis for	the hyperfin	ne structure	e (hyperfine	
	spectrum)., Overview of	f molecular physic	ical quantities ar	nd their stru	icture/energ	gy levels., (Overview of	
	atoms/molecules for eas	v analysis Over	view of low-res	olution spe	e interactio	n of laser h	ight with	
	spectrum observations u	sing a discharge	lamp energy so	urce to disti	inguish the	spectrum r	esults when	
	using a laser., Overview	of the medium i	resolution spectr	oscopy sys	tem (Doppl	er limited)	using a lase	er
	light energy source that	is able to observ	e the fine structu	ire spectrur	n. (optogalv	vanic, opto	-acoustic, oj	pto-
	thermal, laser induced fl	luorescence (LIF), Resonance inc	luced spect	roscopy (R	IS), resona	nce induced	l
	mass spectroscopy (RIN	(IS), laser induce	d break down sp	ectroscopy	(LIBS).), (Overview o	f the mediu	m
	resolution spectroscopy	system (Doppler	· limited) using a	a laser light	energy sou	rce that is a	able to obse	rve
	Resonance induced spectru	um. (optogarvam	resonance induc	ed mass so	nal, laser in	(RIMS) 1a	ser induced	іг),
	kesonance induced spectroscopy (KIS), resonance induced mass spectroscopy (KIMS), laser induced break down spectroscopy (LIBS)). Overview of high resolution spectroscopy system (Doppler Free)							
	using a laser light energy source that is able to observe the spectrum of hyperfine structures. (saturation							
	method, polarization (POLINEX), inter modulation (IMOGS), level crossing spectroscopy)., Overview of							
	high resolution spectroscopy system (Doppler Free) using a laser light energy source that is able to							
	observe the spectrum of hyperfine structures. (saturation method, polarization (POLINEX), inter modulation (IMOCS) loval crossing spectroscopy)							
	modulation (IMOGS), level crossing spectroscopy)							
Access to Learning	winteboard, sinde, sinde	scopy						
Learning Media/IMS								
and Offline								
and Online								
Percentage								
Assessment								
Methods and	Accomment	According	Critorio/Tr]
Synchronizati	Mothods	Dorcontogo	digators	COI	CO2	CO3	CO4	
on with CO	Devite	Tercentage	ulcators			05	04	
	Participatory							
	Activity*							-
	Project Results/							
	Degulte / DDI							
	Results/ PDL Decults*							
	Cognitivo	I	<u> </u>	l				
		2004		7.5%	7.50	7.50	7.50/	-
	Assignment	30%		7,5%	7,5%	7,5%	7,5%	

	Quiz							
	Midterm Ex	am 35%		17,5%	17,5%			
	Final Exam	35%				17,5%	17,5%	
	*) can also be obtained from the Midterm or Final Exam as the result of participatory activities or project/ case study results. According to IKU 7, the percentage of project results/ case study/ PBL results is at least 50%.							
References	 Main references: 1. Svanberg S., 1991, Atomic and Molecular Spectroscopy: Basic conceptsand practical applications, Springer-Verlag. 2. Demtroder, W., 1981, Laser Spectroscopy: Basic Cencept and Instrumentation, Springer-Verlag. 							
Lecturers	1. Prof. Dr. Agung Bambang Setio Utomo, S.U.							
(Team	2.							
Teaching)	$\begin{bmatrix} 3.\\ 4 \end{bmatrix}$							
Authorization	Date of Drafting	Lecturer Coordin	nator H	Iead of Cur Commit	riculum tee	Head Pi	d of Study rogram	
		Prof. Dr. Agung Ba Setio Utomo, S.	mbang I U.	Dr.Ing. Ari S	etiawan	Mirza Sa	triawan, M.Si., Ph.D	