SEMESTER LEARNING ACTIVITY PLANS (SLAP) SEMESTER ODD 2022/2023

Geophysics Inversion MFF5933 / 2 Credits

Lecturer Coordinator:

Dr. Ing. Ari Setiawan, M.Si.

UNIVERSITAS GADJAH MADA FACULTY OF MATHEMATICS AND NATURAL SCIENCE 2022

	Universitas Gadjah Mada Faculty of Mathematics and Natural Science Physics Department / Study Program Master Physics Semester Odd 2022/2023							
SEMESTER LEARNING ACTIVITY PLANS (SLAP)								
Code	Course Name	Credits (credits)	Semester	Status	Prerequisite			
MFF5933	Geophysics Inversion	2	Odd	Elective	None			
Short Description	Geophysics Inversion course is Elective course 2 credits (Theory) in the 2022 Curriculum Master Physics Study Program, Faculty of Mathematics and Natural Science UGM.							
	Introduction to inversion theory, review of linear and statistical algebra, Inverse method based on length, Linearization of nonlinear problems, eigenvalue problems, decomposition of single values (svd), general inverse and quality measures, general inversion variations. Characterization of inversion problems, linear, discrete inversion problems, nonlinear linearization problems, discrete problems of unclear inversion, regularization, inversion and search of nonlinear parameters, probability inference.							
	The courses are course period is	e held in class for 1 used for Midterm F	4 weeks, each Exam and Final	week's session last for 2 x 5 Exam, each held for two wee	50 minutes. Four weeks of eks as scheduled.			
	Student evaluation for course assessments is performed summative and formative. The summative evaluation is implemented as written exams, both Midterm and Final Exam, which take a maximum of 120 minutes. The formative evaluation is implemented as individual assignments for each student in the form of completing an assignment individually. Monitoring is carried out by observing student activities during the course, such as attendance, Q&A and discussion about the material presented, and student performance in completing individual assignments.							
Program Learning Outcomes (PLO) Imposed on	ram ning omes ()Mastering further knowledge of classical and modern physics theory, and its relationship with other disciplines, and has mastered an advanced field of physics specialization that allows him to keep up with the latest international research developments.PLO 3Mastering various mathematical disciplines related to an advanced field of physics, and able to develop physical models using various mathematical and computational tools with an inter or multidisciplinary approach to solving problems related to an advanced field of physics.PLO 4Able to apply knowledge to analyze, synthesize, formulate problems and solv problems comprehensively in one of advanced field of physics, through experimental or theoretical research, then be able to classify and draw conclusions about their findings for the development of science and technolog							
the Course								
	Upon comple	tion of this cours	e, students sh	ould be able to:				
<i>CO1</i> Understand the inverse theory and examples of Forwarding Problems.								

Course	<i>CO2</i>	Master the concepts of linear algebra and statistics.					
Outcomes	СОЗ	Master the Inverse Method based on length.					
(CO)	<i>CO4</i>	Master the linearization of nonlinear problems.					
	<i>CO5</i>	Master the eigenvalue problem and singular-value decomposition (SVD).					
	<i>CO6</i>	Generalize the measurement quality inversion.					
	<i>C07</i>	A V					
	CO8						
The		Learning Materials	Learning Methods	Time			
Correlation of				Allocation			
CO to							
Learning	CO1	1. Inverse Theory	Lecture, discussion	2 x 50			
Materials and	001	2. Useful Definitions		minutes			
Methods, and		3. Possible Goals of an Inverse					
Time		Analysis					
Allocation		4. Nomenclature					
	<i>CO1</i>	1. Introduction	Lecture, discussion	2 x 50			
		2. Probabilistic and Statistics		minutes			
	<i>CO1</i>	1. Introduction	Lecture, discussion	2 x 50			
		2. Data Error and Model Parameter		minutes			
		Vectors					
		3. Measures of Length					
		4. Minimizing the Misfit: Least					
		Squares					
<i>CO2</i>		1. Derivation of the General Least	Lecture, discussion	2 x 50			
		Squares Solution		minutes			
		2. Two Examples of Least Squares					
		Problems					
		3. Four-Parameter Tomography					
		Problem					
		4. Determinacy of Least Squares					
	<u></u>	Problems	Lesture discussion	2 - 50			
	02	1. Minimum Length Solution	Lecture, discussion	2×50			
		2. Weighted Measures of Length		minutes			
		S. A FIIOII Information and Constraints					
		A Variance of the Model					
		Parameters					
	<u>CO2</u>	1 Introduction	Lecture discussion	2 x 50			
	002	2 Linearization of Nonlinear	Lecture, discussion	minutes			
		Problems		minutes			
		3. General Procedure for Nonlinear					
		Problems					
		4. Three Examples					
		5. Creeping vs. Jumping (Shaw and					
		Orcutt, 1985)					
	<i>CO2</i>	1. Introduction	Lecture, discussion	2 x 50			
		2. The Eigenvalue Problem for		minutes			
		Square (M \times M) Matrix A					
		3. Geometrical Interpretation of the					
		Eigenvalue Problem for Symmetric					
		A					

		4 Decomposition Theorem for						
		Square A						
		5 Figenvector Structure of mLS						
	<i>CO</i> 3	1. Introduction	Lecture, discussion	2 x 50				
	000	2. Formation of a New Matrix B		minutes				
		3 The Figenvalue Problem for B		minutes				
		4 Solving the Shifted Figenvalue						
		Problem						
	<i>CO</i> 3	1 How Many	Lecture discussion	2 x 50				
	005	2 Introducing Singular Values		minutes				
		3 Derivation of the Fundamental		minutes				
		Decomposition Theorem for						
		General G						
	<i>CO</i> 3	1 Singular-Value Decomposition	Lecture discussion	2 x 50				
	005	(SVD)		minutes				
		2 Mechanics of Singular -Value		minutes				
		Decomposition						
		3 Implications of Singular -Value						
		Decomposition						
	C04	1 Introduction	Lecture discussion	2 x 50				
	007	2 The Generalized Inverse		minutes				
		Operator Gg-1		minutes				
		3 Measures of Quality for the						
		Generalized Inverse						
		4 Quantifying the Quality of R N						
		and [covu m]						
		5. Resolution Versus Stability						
	<i>CO4</i>	1. Linear Transformations	Lecture, discussion	2 x 50				
		2. Including Prior Information, or		minutes				
		the Weighted Generalized Inverse						
		3. Damped Least Squares and the						
		Stochastic Inverse						
		4. Ridge Regression						
		5. Maximum Likelihood						
	<i>CO4</i>	1. Introduction	Lecture, discussion	2 x 50				
		2. The Backus - Gilbert Approach		minutes				
		3. Neural Networks						
	<i>CO4</i>	1. The Radon Transform and	Lecture, discussion	2 x 50				
		Tomography (Approach 1)		minutes				
		2. A Review of the Radon						
		Transform (Approach 2)						
		3. Alternative Approaches to						
		Tomography		<u> </u>				
		Final Exam/ Project Task Resul	ts/ Case Analysis Results					
Learning	Lecture, discu	ussion						
Methods								
Student	Learn to analy	ze and review: 1. Inverse Theory						
Learning	2. Useful Definitions							
Experience	4 Nomenclatu	are 1 Introduction						
	4. Nomenclature, 1. Introduction							

	2. Probabilistic and Statistics, 1. Introduction							
	2. Data Error and Model Parameter Vectors							
	3. Measures of Length							
	4. Minimizing the Misfit: Least Squares, 1. Derivation of the General Least Squares Solution							
	2. Two Examples of Least Squares Problems							
	3. Four-Parameter Tomography Problem							
	4. Determinacy of Least Squares Problems, 1. Minimum Length Solution							
	2. Weighted Measures of Length							
	3. A Priori Information and Constraints							
	4. Variance of the Mode	l Parameters, 1.	Introduction					
	2. Linearization of Nonl	inear Problems						
	3. General Procedure for	r Nonlinear Prob	lems					
	4. Three Examples							
	5. Creeping vs. Jumping	(Shaw and Orcu	ıtt, 1985), 1. Inti	oduction				
	2. The Eigenvalue Probl	em for Square (N	$M \times M$) Matrix A	A				
	3. Geometrical Interpret	ation of the Eige	nvalue Problem	for Symme	etric A			
	4. Decomposition Theorem	em for Square A		•				
	5. Eigenvector Structure	of mLS, 1. Intro	oduction					
	2. Formation of a New M	Matrix B						
	3. The Eigenvalue Probl	em for B						
	4. Solving the Shifted E	igenvalue Proble	m, 1. How Man	у				
	2. Introducing Singular	Values		•				
	3. Derivation of the Fun	damental Decom	position Theore	m for Gene	eral G, 1. Si	ingular-Val	ue	
	Decomposition (SVD).							
	2. Mechanics of Singula	r -Value Decom	position					
	3. Implications of Singu	lar -Value Decor	nposition, 1. Int	roduction				
	2. The Generalized Inve	rse Operator Gg-	-1					
	3. Measures of Quality f	for the Generalize	ed Inverse					
	4. Quantifying the Quali	ity of R, N, and [covu m]					
	5. Resolution Versus Sta	ability, 1. Linear	Transformation	S				
	2. Including Prior Information, or the Weighted Generalized Inverse							
	3. Damped Least Squares and the Stochastic Inverse							
	4. Ridge Regression							
	5. Maximum Likelihood, 1. Introduction							
	2. The Backus - Gilbert Approach							
	3. Neural Networks, 1. The Radon Transform and Tomography (Approach 1)							
	2. A Review of the Radon Transform (Approach 2)							
	3. Alternative Approaches to Tomography.							
Access to	Texts, presentations, pictures, assignments							
Learning								
Media/ LMS								
and Offline								
and Online								
Percentage								
Accocomont	+							
Assessment Mathada and								
Methods and	Assessment	Assessment	Criteria/In					
Synchronizati	Methods	Percentage	dicators	CO1	CO2	CO3	CO4	
on with CO	Dontioin - t							1
	Participatory							
	Activity*					ļ	ļ	
	Project Results/							
	Case Study							
	Results/ PBL							
	Results*							
	Compitive							
1	Cognitive							

	Assignment	30%		7,5%	7,5%	7,5%	7,5%		
	Quiz								
	Midterm Ex	am 35%		17,5%	17,5%				
	Final Exam	35%				17,5%	17,5%		
	^{*)} can also be obtained from the Midterm or Final Exam as the result of participatory activities or project/ case study results. According to IKU 7, the percentage of project results/ case study/ PBL results is at least 50%.								
References	Main references:								
	1. Albert Tarantola, 2005, Inverse Problem Theory and Methods for Model Parameter								
	Estimation, Si	am.		C1					
	2. Robert L. Parker, 1994, Geophysical Inverse Theory,								
	3. Richard C. Aster, Brian Borchers, 2012, Parameter Estimation and Inverse Problems,								
	LISEVIEL. 4 Menke 1989 Geophysical data analysis: discrete inverse theory Academic Press								
	5. Randall M. Richardson and George Zandt, 2007. Inverse Problems in Geophysics.								
	Department of Geosciences, University of Arizona, Tucson, Arizona 85721.								
	6. Scales, J.A., Smith, L. M., and Treitel, S., 1997, Introductory Geophysical Inverse Theory,								
	Samizdat Press.								
	7. Snieder R., dan Trampert, T., Inverse Problems in Geophysics,								
	(http://samizdat.mines.edu/snieder tra).								
Lecturers	1 Dr. Ing. Ari Satiawan M Si								
(Team	2.								
Teaching)	3.								
	4.								
Authorization	Date of Drafting	Lecturer Coordinat	or	Head of Curi Commit	riculum tee	Head Pi	d of Study rogram		
		Dr. Ing. Ari Setiawan, I	M.Si.	Dr.Ing. Ari S	etiawan	Mirza Sa	triawan, M.Si., Ph.D		