SEMESTER LEARNING ACTIVITY PLANS (SLAP) SEMESTER ODD 2022/2023

Computational Physics MFF5027 / 3 Credits

Lecturer Coordinator:

Drs. Pekik Nurwantoro, M.S., Ph.D.

UNIVERSITAS GADJAH MADA FACULTY OF MATHEMATICS AND NATURAL SCIENCE 2022

	Universitas Gadjah Mada Faculty of Mathematics and Natural Science Physics Department / Study Program Master Physics Semester Odd 2022/2023							
SEMESTER LEARNING ACTIVITY PLANS (SLAP)								
Code	Course Name	Credits (credits)	Semester	Status	Prerequisite			
MFF5027	Computatio nal Physics	3 Odd Elective None						
Short Description	Computational Physics course is Elective course 3 credits (Theory) in the 2022 Curriculum Master Physics Study Program, Faculty of Mathematics and Natural Science UGM. The syllabus of this course is as follows: Summary of numerical methods: Computational error analysis, numerical interpolation and integration methods, iteration methods to find the zero point (root), numerical derivation and integration, a system of linear equations, function approximation, matrix inversion, and eigenvalue problems. Numerical methods for solving differential and integral equations. Fast Fourier Transform. Basic understanding of Computational Physics: Finite difference presentation of differential and integral operators, solving nonlinear equations, initial condition problems, boundary condition problems, numerical solutions for n-dimensional systems, application of various methods to various physics cases. The courses are held in class for 14 weeks, each week's session last for 3 x 50 minutes. Four weeks of course period is used for Midterm Exam and Final Exam, each held for two weeks as scheduled. Student evaluation for course assessments is performed summative and formative. The summative evaluation is implemented as written exams, both Midterm and Final Exam, which take a maximum of 120 minutes. The formative evaluation is implemented as individual assignments for each student in the form of completing an assignment individually. Monitoring is carried out by observing student activities during the course, such as attendance, Q&A and discussion about the material presented, and student performance							
Program Learning Outcomes (PLO) Imposed on the Course	PLO 3 PLO 4 PLO 6	In completing individual assignments. Mastering further knowledge of classical and modern physics theory, and its relationship with other disciplines, and has mastered an advanced field of physics specialization that allows him to keep up with the latest international research developments. PLO 3 Mastering various mathematical disciplines related to an advanced field of physics, and able to develop physical models using various mathematical and computational tools with an inter or multidisciplinary approach to solving problems related to an advanced field of physics. Able to apply knowledge to analyze, synthesize, formulate problems and solve problems comprehensively in one of advanced field of physics, through experimental or theoretical research, then be able to classify and draw conclusions about their findings for the development of science and technology.						

Course	Upon completion of this course, students should be able to:						
Outcomes	<i>CO1</i>	Formulate and provide (to describe) the physical phenomena that are being					
(CO)		studied and reveal important information contained in the physics problem					
		through various tricks or certain mathematical procedures and utilize various					
		approaches (approximations).					
	CO2	Solve a problem with structured solutions (well-defined solutions), formulate a					
		problem carefully and try other approaches (approaches) in an effort to improve					
		the solution of a challenging problem.					
	CO3	Conduct a search for physics problems fr	com various sources and referen	ces to get an			
	<u> </u>	understanding of important information.	1 1				
	<i>C04</i>	Apply various forms of visualization, graphics or simulations through computer					
		numerical tools	ware, programming ranguages	and packages of			
	<i>CO5</i>						
	C06						
	C07						
	C08						
The		Learning Materials	Learning Methods	Time			
Correlation of				Allocation			
CO to	-						
Learning	<i>CO1</i>	Understanding and basics of	Lecture, discussion	3 x 50			
Materials and		Computational Physics, including		minutes			
Methods, and		an understanding of the principles					
Time		of processing information by					
Allocation		computers using binary operations					
		and their consequences for					
		computer performance.					
	<i>CO1</i>	The basics of understanding	Lecture, discussion	3 x 50			
		Computational Physics that need to		minutes			
		be a concern for students, such as					
		the concept of approximation,					
		rounding, numerical stability and					
	others						
	<i>CO1</i>	Basic aspects of Computational	Lecture, discussion	3 x 50			
		Physics, explanation and		minutes			
		understanding of the basic aspects					
		of Computational Physics					
		normalized units representation of					
		discrete forms for mathematical					
		operators or physical quantities and					
		others					
	<i>C</i> 02	The initial conditions problem an	Lecture discussion	3 x 50			
	002	explanation of the emergence of the		minutes			
		initial conditions problem in a		minutos			
		particular differential equation and					
		the introduction of several					
		algorithms for solving the initial					
		conditions problem.					
	<i>CO2</i>	Physics problems related to initial	Lecture, discussion	3 x 50			
		conditions problems, explanations		minutes			

	of the emergence of physics		
	problems related to initial		
	conditions problems and the		
	introduction of algorithms for		
	solving these physics problems.		
<i>CO2</i>	Boundary condition problems, an	Lecture, discussion	3 x 50
	explanation of the emergence of		minutes
	boundary conditions problems in a		
	particular differential equation and		
	the introduction of several		
	boundary condition problem		
	solving algorithms.		
<i>CO2</i>	Physics problems related to	Lecture, discussion	3 x 50
	boundary conditions problems.	,	minutes
	explanations of the emergence of		
	physics problems related to		
	boundary conditions problems and		
	the introduction of algorithms for		
	solving these physics problems		
	solving these physics problems.		
<i>C</i> (2)	The Matrix Mathed on evaluation	Lesture discussion	2 - 50
COS	of the sensent of metrices and their	Lecture, discussion	5 X 50
	of the concept of matrices and their		minutes
	numerical solution methods as well		
	as the introduction of several		
	algorithms that require matrix		
<i>C</i> (2)	Dhara ing malalana malata dita dha	Testerne discoursion	2 - 50
03	Physics problems related to the	Lecture, discussion	3 X 50
	nandling of the matrix method, an		minutes
	explanation of the emergence of		
	physics problems related to the		
	af algorithms for solving these		
	of algorithms for solving these		
<i>C</i> (2)	Providence problems.	Testano dia mandri an	2 - 50
03	Eigen value problems, an	Lecture, discussion	3 X 50
	explanation of the emergence of		minutes
	eigenvalue problems and numerical		
	solution techniques to obtain		
	eigenvalues and their		
	eigenfunctions as well as the		
	introduction of several algorithms		
	for solving eigenvalue problems,		
	both of which involve searching for		
	eigenvalues only.		
	as well as those		
	includes functions		
004	ine eigens.	T 1 1	2 50
C04	Physics problems related to	Lecture, discussion	3 x 50
	eigenvalue problems, explanations		minutes
	about the emergence of physics		
	problems related to eigenvalue		
	problems and the introduction of		

		algorithms for solving these					
		physics problems.					
	<i>CO4</i>	Numerical integration and	Lecture, discussion	3 x 50			
		quadrature problems, explanation		minutes			
		of numerical integration methods					
		and introduction to some					
		algorithm for					
		solution					
		integration and					
		quadrature					
		numeric.					
	<i>CO4</i>	Physics problems related to	Lecture, discussion	3 x 50			
		numerical integration problems,		minutes			
		explanations of the emergence of					
		physics problems related to					
		numerical integration problems and					
		the introduction of algorithms for					
		solving these physics problems.					
	<i>CO4</i>	The explanation of the method of	Lecture, discussion	3 x 50			
		solving the zero point problem is	,	minutes			
		finding the roots of a nonlinear					
		function and the introduction of					
		several numerical algorithms for					
		the zero point problem as well as					
		some physical problems that can be					
		formulated in the zero point					
		problem.					
		Final Exam/ Project Task Result	ts/ Case Analysis Results				
Learning	Lecture, discu	ission					
Methods							
Student	Learn to analyz	e and review: Understanding and basics of	Computational Physics, includ	ing an			
Learning	understanding of the principles of processing information by computers using binary operations and their						
Experience	consequences for computer performance., The basics of understanding Computational Physics that need						
	to be a concern for students, such as the concept of approximation, rounding, numerical stability and others. Basic aspects of Computational Physics, explanation and understanding of the basic aspects of						
	others, Basic aspects of Computational Physics, explanation and understanding of the basic aspects of Computational Physics concerning the use of universal or normalized units representation of discrete						
	forms for mathematical operators or physical quantities and others The initial conditions problem, an						
	explanation of the emergence of the initial conditions problem in a particular differential equation and the						
	introduction of several algorithms for solving the initial conditions problem., Physics problems related to						
	initial conditions problems, explanations of the emergence of physics problems related to initial						
	conditions problems and the introduction of algorithms for solving these physics problems., Boundary						
	condition problems, an explanation of the emergence of boundary conditions problems in a particular						
	differential equation and the introduction of several boundary condition problem solving algorithms., Physics problems related to boundary conditions problems, explanations of the emergence of physics						
	problems related to boundary conditions problems, explanations of the emergence of physics						
	problems related to boundary conditions problems and the introduction of algorithms for solving these physics problems. The Matrix Method, an explanation of the concept of matrices and their numerical						
	solution methods as well as the introduction of several algorithms that require matrix handling Physics						
	problems related to the handling of the matrix method, an explanation of the emergence of physics						
	problems related to the matrix method and the introduction of algorithms for solving these physics						
	problems., Eigen value problems, an explanation of the emergence of eigenvalue problems and numerical						
	solution techniques to obtain eigenvalues and their eigenfunctions as well as the introduction of several						
	algorithms for s	solving eigenvalue problems, both of which	h involve searching for eigenval	lues only.			
	as well as those						

	includes functions						
	the eigens., Physics problems related to eigenvalue problems, explanations about the emergence of physics problems related to eigenvalue problems and the introduction of algorithms for solving these						
	physics problems, Numerical integration and quadrature problems, explanation of numerical integration						
	methods and introduction to some						
	algorithm for						
	solution						
	quadrature						
	numeric., Physics proble	ems related to nu	merical integrat	ion probler	ns, explana	tions of the	emergence of
	physics problems related	d to numerical in	tegration proble	ms and the	introductio	n of algorit	hms for solving
	these physics problems.	, The explanation	n of the method	of solving t	the zero poi	nt problem	is finding the
	roots of a nonlinear func	ction and the intr	oduction of seve	ormulated i	cal algorith	ms for the z	ero point
Access to	Powerpoint, whiteboard		ins that can be r	ormanaca	In the zero		
Learning	I I I I						
Media/ LMS							
and Offline							
and Online							
Percentage							
Assessment Methods and			1		Γ	T	
Svnchronizati	Assessment	Assessment	Criteria/In	001	GOA	coa	
on with CO	Methods	Percentage	dicators	COI	CO2	CO3	CO4
	Participatory						
	Activity*						
	Project Results/						
	Case Study						
	Results*						
	Cognitive	1					
	Assignment	30%		7.5%	7.5%	7.5%	7.5%
	Ouiz			.,	.,	.,	.,
	Midterm Exam	35%		17,5%	17.5%		
	Final Exam	35%			Í	17,5%	17,5%
	*) can also be obtai	ned from the N	Midterm or Fi	nal Exam	as the res	ult of par	ticinatory
	activities or project/ case study results. According to IKU 7 the percentage of project						
	results/ case study/ F	PBL results is at	t least 50%.		,, ene pe		, projece
References	Main references:						
References	1. Conte, S.D., and de Boor, C., 1980 Elementary Numerical Analysis An Algorithm						
	Approach, 3rd ed., McGraw-Hill Press.						
	2. W.H. et al., 1987, NUMERICAL RECIPES, The Art of Scientific Computing, dan Vet- telling.						
	3. W.T. et al., Numeri	ical Recipes Ex	amples Book (FORTRA	N), Cambi	ridge Univ	ersity Press.
	4. Veseley, F.J., 1994, Computational Physics, Plenum Press.						
	5. Koonin, S.E., 1986, Computational Physics, Addison-Wesley Co.						
Lecturers	1. Drs. Pekik Nurwan	toro, M.S., Ph.D.					
(Team	2.	,, -					
Teaching)	3.						
	4.						

Authorization	Date of Drafting	Lecturer Coordinator	Head of Curriculum Committee	Head of Study Program
		Drs. Pekik Nurwantoro, M.S., Ph.D.	Dr.Ing. Ari Setiawan	Mirza Satriawan, M.Si., Ph.D