# SEMESTER LEARNING ACTIVITY PLANS (SLAP) 

## SEMESTER EVEN 2022/2023



Computation of Celestial Body Mechanics MFF5032 / 2 Credits

Lecturer Coordinator:
Dr. Eng. Rinto Anugraha NQZ, S.Si., M.Si.

UNIVERSITAS GADJAH MADA
FACULTY OF MATHEMATICS AND NATURAL SCIENCE

|  | Universitas Gadjah Mada <br> Faculty of Mathematics and Natural Science Physics Department / Study Program Master Physics Semester Even 2022/2023 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SEMESTER LEARNING ACTIVITY PLANS (SLAP) |  |  |  |  |  |
| Code | Course Name | Credits (credits) | Semester | Status | Prerequisite |
| MFF5032 | Computatio $n$ of Celestial Body Mechanics | 2 | Even | Elective | None |
| Short <br> Description | Computation of Celestial Body Mechanics course is Elective course 2 credits (Theory) in the 2022 Curriculum Master Physics Study Program, Faculty of Mathematics and Natural Science UGM. <br> The syllabus of this course is as follows: <br> Time and calendar. Earth and spherical coordinates, ecliptic coordinates, equator, and horizon. Sun position algorithm: low accuracy, Meeus and VSOP, application on prayer times and day duration. Moon position algorithm: Brown, Meeus, and ELP. Meeus algorithm for moon phases. Algorithm of lunar and solar eclipses: Meeus and VSOP. <br> The courses are held in class for 14 weeks, each week's session last for $2 \times 50$ minutes. Four weeks of course period is used for Midterm Exam and Final Exam, each held for two weeks as scheduled. <br> Student evaluation for course assessments is performed summative and formative. The summative evaluation is implemented as written exams, both Midterm and Final Exam, which take a maximum of 120 minutes. The formative evaluation is implemented as individual assignments for each student in the form of completing an assignment individually. Monitoring is carried out by observing student activities during the course, such as attendance, Q\&A and discussion about the material presented, and student performance in completing individual assignments. |  |  |  |  |
| Program Learning Outcomes (PLO) Imposed on the Course | PLO 3 | Mastering further knowledge of classical and modern physics theory, and its relationship with other disciplines, and has mastered an advanced field of physics specialization that allows him to keep up with the latest international research developments. |  |  |  |
|  | PLO 4 | Mastering various mathematical disciplines related to an advanced field of physics, and able to develop physical models using various mathematical and computational tools with an inter or multidisciplinary approach to solving problems related to an advanced field of physics. |  |  |  |
|  | PLO 6 | Able to apply knowledge to analyze, synthesize, formulate problems and solve problems comprehensively in one of advanced field of physics, through experimental or theoretical research, then be able to classify and draw conclusions about their findings for the development of science and technology. |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |


| CourseOutcomes(CO) | Upon completion of this course, students should be able to: |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | CO1 | Understand Julian Time and Day, Gregorian Calendar and Hijri Calendar, Earth and Spherical Triangle. |  |  |
|  | CO2 | Understand Spherical Coordinate System, Coordinate System Transformation, Low Accuracy Algorithm of Sun Position. |  |  |
|  | CO3 | Understand the Sun Position with Jean Meeus Algorithm, Moon Position with Browne Algorithm, and Moon Position with Jean Meeus Algorithm. |  |  |
|  | CO4 | Understand the Moon Phases with Jean Meeus Algorithm, Moon Phase with Moon-Sun Position Algorithm, Calendar, and Moon Phases. |  |  |
|  | CO5 | Understand Lunar Eclipses and Solar Eclipses. |  |  |
|  | CO6 |  |  |  |
|  | CO7 |  |  |  |
|  | CO8 |  |  |  |
| The Correlation of CO to Learning Materials and Methods, and Time Allocation |  | Learning Materials | Learning Methods | Time Allocation |
|  |  |  |  |  |
|  | CO1 | Time and Julian Day | Lecture, discussion | $\begin{gathered} 2 \times 50 \\ \text { minutes } \end{gathered}$ |
|  | CO1 | Gregorian Calendar and Hijri Calendar. | Lecture, discussion | $\begin{gathered} 2 \times 50 \\ \text { minutes } \\ \hline \end{gathered}$ |
|  | CO1 | Earth and Spheric Triangle. | Lecture, discussion | $\begin{gathered} \hline 2 \times 50 \\ \text { minutes } \end{gathered}$ |
|  | CO2 | Spherical Coordinate System | Lecture, discussion | $\begin{gathered} 2 \times 50 \\ \text { minutes } \end{gathered}$ |
|  | CO2 | Coordinate System Transform | Lecture, discussion | $\begin{gathered} \hline 2 \times 50 \\ \text { minutes } \end{gathered}$ |
|  | CO2 | Sun Position Low Accuracy Algorithm. | Lecture, discussion | $\begin{gathered} \hline 2 \times 50 \\ \text { minutes } \\ \hline \end{gathered}$ |
|  | CO2 | Sun Position Jean Meeus Algorithm. | Lecture, discussion | $\begin{gathered} 2 \times 50 \\ \text { minutes } \end{gathered}$ |
|  |  |  |  |  |
|  | CO3 | Brown's Algorithm Moon Position. | Lecture, discussion | $\begin{gathered} \hline 2 \times 50 \\ \text { minutes } \end{gathered}$ |
|  | CO3 | Moon Position Jean Meuus Algorithm. | Lecture, discussion | $\begin{gathered} 2 \times 50 \\ \text { minutes } \end{gathered}$ |
|  | CO3 | The Moon Phases of the Jean Meuus Algorithm. | Lecture, discussion | $\begin{gathered} 2 \times 50 \\ \text { minutes } \\ \hline \end{gathered}$ |
|  | CO4 | Moon Phase Algorithm Moon-Sun Position. | Lecture, discussion | $\begin{gathered} 2 \times 50 \\ \text { minutes } \end{gathered}$ |
|  | CO4 | Calendar and Moon Phases. | Lecture, discussion | $\begin{gathered} 2 \times 50 \\ \text { minutes } \\ \hline \end{gathered}$ |
|  | CO4 | Lunar eclipse | Lecture, discussion | $\begin{gathered} \hline 2 \times 50 \\ \text { minutes } \end{gathered}$ |
|  | CO4 | Solar eclipse | Lecture, discussion | $\begin{gathered} 2 \times 50 \\ \text { minutes } \\ \hline \end{gathered}$ |
|  | Final Exam/ Project Task Results/ Case Analysis Results |  |  |  |
| Learning <br> Methods | Lecture, discussion |  |  |  |



