SEMESTER LEARNING ACTIVITY PLANS (SLAP) SEMESTER ODD/EVEN 2022/2023

Classical Mechanics MFF5401 / 3 Credits

Lecturer Coordinator:

Drs. Yosef Robertus Utomo, S.U.

UNIVERSITAS GADJAH MADA FACULTY OF MATHEMATICS AND NATURAL SCIENCE 2022

-	

Universitas Gadjah Mada Faculty of Mathematics and Natural Science Physics Department / Study Program Master Physics Semester Odd/Even 2022/2023

SEMESTER LEARNING ACTIVITY PLANS (SLAP)

Code	Course Name	Credits (credits)	Semester	Status	Prerequisite		
MFF5401	Classical Mechanics	3	Odd/Even	Compulsory	None		
Short Description	Classical Mech Physics Study I	Aechanics course is Compulsory course 3 credits (Theory) in the 2022 Curriculum Master ady Program, Faculty of Mathematics and Natural Science UGM.					
	The syllabus of Fundamental P symmetry, and dynamics. Cano relativistic dyna	f this course is as follows: Principles of Newtonian Mechanics, Lagrange, and Hamilton. A system with constraints, d the law of conservation. Two-body systems, Kepler motion, kinetics, and rigid-body ionical variables and transformations, Poisson equations of motion, Hamilton-Jacobi theory, namics, swings, and their normal variances.					
	The courses are course period is	e held in class for 1 s used for Midterm H	4 weeks, each Exam and Final	week's session last for 3 x 5 Exam, each held for two wee	50 minutes. Four weeks of eks as scheduled.		
	Student evalua evaluation is im minutes. The fo of completing a the course, such in completing in	ation for course assessments is performed summative and formative. The summative nplemented as written exams, both Midterm and Final Exam, which take a maximum of 120 formative evaluation is implemented as individual assignments for each student in the form an assignment individually. Monitoring is carried out by observing student activities during the as attendance, Q&A and discussion about the material presented, and student performance individual assignments.					
Program							
Learning		Mastering further	r knowledge o	of classical and modern phy	ysics theory, and its		
(PLO)		relationship with other disciplines, and has mastered an advanced field of					
Imposed on	PLO 3	physics specialization that allows him to keep up with the latest international research developments					
the Course	PLO 4	Mastering various mathematical disciplines related to an advanced field of physics, and able to develop physical models using various mathematical and computational tools with an inter or multidisciplinary approach to solving problems related to an advanced field of physics.					
	PLO 6	Able to apply known problems compre- experimental or t conclusions about	le to apply knowledge to analyze, synthesize, formulate problems and solve oblems comprehensively in one of advanced field of physics, through perimental or theoretical research, then be able to classify and draw inclusions about their findings for the development of science and technology.				
	Upon comple	tion of this cours	e, students sh	nould be able to:			

Course	<i>C01</i>	Describes and discusses: Fundamentals of Mechanics, Newtonian Mechanics for				
Outcomes		single-particle and plural-particle systems, and calculus of variations to solve				
(CO)		mechanical problems in Lagrangian formalism.				
	CO2	Describe and discuss: The concept of symmetry and symmetry breaking and				
		their relation to the preservation of a	physical quantity through the	e Noether		
		theorem. Lagrange's equation for a system having a central notential i.e.				
		planetary orbits and particle scatterin	g.	, ,		
	СОЗ	Describe and discuss: Hamiltonian formu	ulation in solving mechanical sy	stem problems.		
		The use of Euler-Lagrange formalism for kinematic motion of rigid bodies, Euler angles,				
		rotation of rigid bodies (moment of inerti	ia tensor), Euler equations, and	apparent force		
		effects (Coriolis).				
	<i>CO4</i>	Explain and discuss: The use of Euler-La	agrange formalism for small osc	illatory motions		
		(sign damping, with damping, and extern	al force). Canonical transforma	tion and its		
	<i>C</i> 05	Explain and discuss: Hamiltonian Jacobi	formalism in discussing the me	ation of objects		
	005	Special relativity theory and its relation t	o Lagrangian formalism and Ha	miltonian		
		formalism.	o Eugrangian formanisin and fre	amitomun		
	CO6					
	<i>C07</i>					
	CO8					
The		Learning Materials	Learning Methods	Time		
Correlation of		0	5	Allocation		
CO to						
Learning	CO1	INTRODUCTION: Summary of	Lecture	3 x 50		
Materials and	001	the history of classical mechanics	Leetuie	minutes		
Methods, and		and its comparison with quantum				
Time		and relativistic mechanics.				
Allocation		Fundamentals of Newtonian				
		mechanics on single-particle and				
		multiple-particle systems.				
		Application of D'alembert's				
		apparent force principle and its				
		relation to Newtonian mechanics				
		and Lagrangian mechanics.				
	CO1	Lagrange method: degrees of	Lecture	3 x 50		
		freedom, configuration space,		minutes		
		general coordinates, conjugate				
		momentum, calculus of variations,				
		Lagrange multiplier, and press.				
		Lagrange motion with constraint				
		and without constraint, Lagrange				
		method for system with velocity				
		dependent potential.				
	<i>CO1</i>	Lagrange method: degrees of	Lecture	3 x 50		
		freedom, configuration space,		minutes		
		general coordinates, conjugate				
		momentum, calculus of variations,				
		Lagrange multiplier, and press.				
		Lagrange motion with constraint				
		and without constraint, Lagrange				
		method for system with velocity				
		dependent potential.				

	<i>CO2</i>	Noether's theorem, the relation of	Lecture	3 x 50
		the Lagrange equation to symmetry		minutes
		and the law of sustainability.		
	CO2	Formulasi Hamiltonian, ruang fase,	Lecture	3 x 50
		transformasi Legendre, relasi		minutes
		mekanika Hamiltonian dengan		
		simetri dan hukum kelestarian		
	<i>CO</i> 2	Lagrange's equations for the	Lecture	3 x 50
	002	Central Potential System planetary	Lootare	minutes
		orbit problems and Rutherford		minutes
		scattering		
	<i>C</i> (2)	L agrange's equations for the	Locturo	3 x 50
	02	Control Detential System planetery	Lecture	J X JU
		Central Potential System, planetary		minutes
		orbit problems and Rutherford		
		scattering.		
	CO3	Rigid body kinematics, Euler	Lecture	3 x 50
		angles, rotation of rigid bodies,		minutes
		moment of inertia tensor, Eq.		
		Euler-Langrage and its relation to		
		kinematics and rotation of rigid		
		bodies, apparent forces (Coriolis		
		effect).		
	CO3	Rigid body kinematics, Euler	Lecture	3 x 50
		angles, rotation of rigid bodies,		minutes
		moment of inertia tensor, Eq.		
		Euler-Langrage and its relation to		
		kinematics and rotation of rigid		
		bodies, apparent forces (Coriolis		
		effect).		
	СОЗ	Minor oscillations (sign of	Lecture	3 x 50
		damping, with damping, and		minutes
		external force) and their relation to		
		Eq. Euler-Langrage.		
	<i>CO4</i>	Minor oscillations (sign of	Lecture	3 x 50
		damping, with damping, and		minutes
		external force) and their relation to		
		Eq. Euler-Langrage		
	<i>CO4</i>	Canonical Transformations and	Lecture	3 x 50
		their relation to Lagrangian and		minutes
		Hamiltonian formulations.		
	<i>CO4</i>	Canonical Transformations and	Lecture	3 x 50
		their relation to Lagrangian and		minutes
		Hamiltonian formulations		
	<i>CO4</i>	Pers, Hamilton-Jacobi in describing	Lecture	3 x 50
	001	the motion of objects		minutes
		Final Exam/ Project Task Result	ts/ Case Analysis Result	s
Loomina	Lacture	This Louis Troject Tush Result	io, Subermanybib Rebuit	
Mothoda	Lecture			
wiethous				

Student	Learn to analyze and review: INTRODUCTION: Summary of the history of classical mechanics and its							
Learning	comparison with quantum and relativistic mechanics. Fundamentals of Newtonian mechanics on single-							
Experience	particle and multiple-pa	rticle systems. A	pplication of D'	alembert's a	apparent for	rce principl	e and its	
	relation to Newtonian m	echanics and La	grangian mecha	nics., Lagra	ange metho	d: degrees (of freedom,	
	multiplier and press L	igrange motion w	vith constraint a	nd without	constraint	Lagrange n	ethod for	
	system with velocity de	pendent potential	L. Lagrange met	hod: degree	es of freedo	m. configu	ration space.	
	general coordinates, cor	jugate momentu	m, calculus of v	ariations, L	agrange m	ultiplier, an	d press.	
	Lagrange motion with c	onstraint and wit	hout constraint,	Lagrange 1	nethod for	system with	n velocity	
	dependent potential., No	bether's theorem,	the relation of t	he Lagrang	e equation	to symmetr	y and the law	
	of sustainability., Formu	ilasi Hamiltoniar	n, ruang fase, tra	insformasi l	Legendre, r	elasi mekar	lika	
	System planetary orbit	not be and nukum	therford scatter	grange's equ	ations for t	ne Central	Control	
	Potential System, planet	arv orbit probler	ns and Rutherfo	rd scatterin	g Rigid bo	odv kinema	tics. Euler	
	angles, rotation of rigid	bodies, moment	of inertia tensor	, Eq. Euler	-Langrage a	and its relation	ion to	
	kinematics and rotation	of rigid bodies, a	apparent forces (Coriolis ef	fect)., Rigio	l body kine	matics, Euler	
	angles, rotation of rigid	bodies, moment	of inertia tensor	, Eq. Euler	-Langrage a	and its relat	ion to	
	kinematics and rotation	of rigid bodies, a	apparent forces (Coriolis ef	fect)., Mino	or oscillation	ns (sign of	
	damping, with damping	, and external for	ce) and their rel	ation to Eq	. Euler-Lan	igrage., Mii	or oscillations	
	Transformations and the	eir relation to Lag	prangian and Ha	miltonian f	formulation	s Canonic	al	
	Transformations and the	eir relation to Lag	grangian and Ha	miltonian f	ormulation	s., Pers. Ha	milton-Jacobi	
	in describing the motion	of objects						
Access to								
Learning								
Media/LMS								
and Offline								
and Online								
Aggaggmont								
Assessment Mothods and		1		1				
Synchronizati	Assessment	Assessment	Criteria/In					
on with CO	Methods	Percentage	dicators	CO1	CO2	CO3	CO4	
on when co	Participatory							
	Activity*							
	Project Results/							
	Case Study							
	Results/ PBL							
	Results*							
	Cognitive							
	Assignment	30%		7,5%	7,5%	7,5%	7,5%	
	Quiz	Quiz						
	Midterm Exam	35%		17,5%	17,5%			
	Final Exam	35%				17,5%	17,5%	
	*) can also be obtain	ned from the N	Midterm or Fi	nal Exam	as the res	ult of par	ticipatory	
	activities or project/ case study results. According to IKU 7, the percentage of project							
	results/ case study/ F	BL results is a	t least 50%.	<i>a</i>	, pe		rjv	

References	Main references:1. Symon, K.R., 1971, Mechanics, edisi 3, Addison-Wesley.2. Goldstein, H., 1980, Classical Mechanics, edisi 2, Addison-Wesley.				
Lecturers	1. Drs. Yosef Robertus Utomo, S.U.				
(Team	2. Dr. Iman Santoso, S.Si., M.Sc.				
Teaching)	 Romy Hanang Setya Budhi, S.Si., M,Sc., Ph.D. 4. 				
Authorization	Date of Drafting	Lecturer Coordinator	Head of Curriculum Committee	Head of Study Program	
		Drs. Yosef Robertus Utomo, S.U.	Dr.Ing. Ari Setiawan	Mirza Satriawan, M.Si., Ph.D	